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Abstract

In this study, the fatigue crack growth behavior of fiber bridging matrix cracks in cross-ply

SCS-6/Ti-15-3 and SCS-6/Timetal-21S laminates containing center holes was investigated.

Experimental observations revealed that matrix cracking was far more extensive and wide spread in

the SCS-6/Ti-15-3 laminates compared to that in the SCS-6/Timetal-21S laminates. In addition,

the fatigue life of the SCS-6/Ti-15-3 laminates was significantly longer than that of the SCS-

6/Timetal-21S laminates. The matrix cracking observed in both material systems was analyzed

using a fiber bridging (FB) model which was formulated using the boundary correction factors and

weight functions for center hole specimen configurations. A frictional shear stress is assumed in

the FB model and was used as a curve fitting parameter to model matrix crack growth data. The

higher frictional shear stresses calculated in the SCS-6/Timetal-21S laminates resulted in lower

stress intensity factors in the matrix and higher axial stresses in the fibers compared to those in the

SCS-6/Ti-15-3 laminates at the same applied stress levels.

a, ao
C, n

Ef,Em
EL
E-r
Fapp

C-q_ge
GLT

AK

AKapp
Kp

AK m

AKtip

max

min

P

Ap
r

rf
R

Nomenclature

Current crack length and unbridged initial crack length, mm

Paris crack growth coefficient constants
Fiber and matrix modulus, MPa

Composite longitudinal modulus, MPa

Composite transverse modulus, MPa

Boundary correction factor applied stress intensity factor

Weight function for bridging stress intensity factor
Composite shear modulus, MPa

Mode I stress intensity factor range, MPa_/'m

Applied stress intensity factor range, MPa_/-m

Stress intensity factor for a concentrated force, P, applied to crack surface

Discrete stress intensity factor range in matrix, MPa,_-_

Continuum stress intensity factor range in composite, MPa_/-m

Slip length, m

Superscript referring to maximum applied load

Superscript referring to minimum applied load
Concentrated force applied on crack surface

Range in bridging pressure, MPa

Hole radius, m
Fiber radius, m

Stress ratio = Smin/Sma x



AS

v f, v m

A_m

ASfip

VLT

Applied stress range, MPa
Fiber and matrix volume fractions

Integration variable along crack from center, mm

Discrete crack opening displacement range in matrix, lam

Continuum crack opening displacement range in composite, iam

Interfacial frictional shear stress, MPa

Composite Poisson's ratio

Introduction

Titanium matrix composites (TMC) are being considered for high strength, low weight

structural components for elevated temperature applications. However, before TMC can be

confidendy used for such applications, the complex state of damage that develops in these materials

must be addressed. During fatigue loading of TMC, matrix cracks often develop and grow normal

to 0 ° fibers without fibers breaking in the wake of these cracks [ 1-6]. As matrix cracks progress

past the 0 ° fibers, fiber-matrix debonding occurs. This phenomena is called fiber bridging and it

has a profound effect on the crack-tip stress intensity factor governing matrix crack growth

behavior. In spite of fibers remaining intact, matrix cracking and fiber-matrix debonding

significantly reduce the composite longitudinal modulus and post-fatigue residual strength [4,5].

Thus, the growth of fiber bridging matrix cracks is of particular concern and is the main focus of

this study.

Much effort has been directed towards modeling the crack growth behavior of fiber

bridging matrix cracks [6-9]. Several of the pioneering fiber bridging (FB) models [7-9] were

reviewed and applied to study matrix crack growth behavior in center notched, unidirectional TMC

[6]. In these FB models, continuum fracture mechanics and micromechanics analyses are

combined to derive stress intensity factor solutions of fiber bridging matrix cracks. The unknown

constant frictional shear stress, % assumed in these models was used as a curve fitting parameter to

available data in [6]. In general, as "cincreased, the calculated matrix stress intensity factor, crack

opening displacement, and slip length all decreased. There were large differences in the values of

used to correlate the data. The value of x depended on the crack length, applied stress level, and

distance from the first intact fiber and, thus, is not a material property. Currently, the FB models



lack true predictivecapabilitiesdueto thedependencyof x on so many factors. The FB models

may provide a framework for future crack growth prediction methodologies. The study in [6]

revealed that the FB models provided an efficient and relatively simple engineering approach to

conduct parametric analysis and helped in the interpretation of the experimental results.

The primary emphasis of this research was to experimentally study and analytically model

the fatigue crack growth behavior of fiber bridging matrix cracks in cross-ply SCS-6/Ti-15-3

laminates and SCS-6/Timetal-21S (formally referred to as SCS-6/1321S) laminates containing

center holes. Experimentally, constant amplitude, tension-tension (R = 0.1) fatigue tests were

conducted under load control mode at a frequency of 10 Hz. Matrix crack initiation and growth

were monitored using a high magnification closed circuit television (CCTV) system, a long focal

length microscopic system with image acquisition capabilities, surface and edge replicas, optical

microscopy, and scanning electron microscopy (SEM). Analytically, the matrix cracking observed

in both material systems was modeled using a fiber bridging (FB) model which was formulated

using the boundary correction factor and weight function for symmetric cracks emanating from a

hole. The frictional shear stress term, x, in this model was used as a curve fitting parameter to

matrix crack growth data. Experimental results were interpreted from the analysis made using the

FB model.

Materials and Test Procedure

Two TMC systems having cross-ply lay-ups containing center holes were studied in this

research, namely, SCS-6/Ti-15-3 laminates and SCS-6/Timetal-21S laminates. Both TMC

systems were fabricated by Textron by hot isostatic pressing (HIPing) titanium foils between

unidirectional tapes of silicon-carbide (SCS-6) fibers having a diameter of 0.14 mm. The fibers

were held in place with molybdenum and titanium-niobium cross weave wires in the SCS-6/Ti-15-

3 and SCS-6/Timetal-21S laminates, respectively. The lay-ups studied were [0/90] s, and [0/9012s

with a range of fiber volume fractions vf of 0.34 to 0.38. In the SCS-6/Ti-15-3 laminates and the

SCS-6/Timetal-2 IS laminates, the composition of the titanium matrices were Ti-15V-3Cr-3A1-3Sn

and Ti-15Mo-3A1-2.7Nb-0.2Si, respectively.
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Specimens were cut using a diamond wheel saw into straight-sided coupons with the 0 °

fibers in the loading direction. Each specimen was 152.4-mm long and 19.1-mm wide. Center

holes having diameter-to-width ratios (d/W) of 0.32 and 0.35 were drilled ultrasonically. The

SCS-6/Ti-15-3 specimens were tested in the as-received condition while the SCS-6/Timetal-21S

specimens were heat treated at a temperature of 620°C for 8 hours in vacuum and then oven cooled

prior to testing. To make optical observations and replicas, the surface of each specimen was

polished to obtain a flat and lustrous finish. Aluminum end tabs were bonded on all specimens in

order to prevent grip failure.

Constant amplitude, tension-tension fatigue tests were conducted under load control with R

= 0.1 at a frequency of 10 Hz using a closed-loop servo-hydraulic test machine equipped with

hydraulic grips. Matrix crack initiation and progression were monitored and recorded in real time

using a CCTV having magnification capabilities up to 325X and a long focal length microscopic

system with image acquisition capabilities. Testing was periodically interrupted when significant

increments in crack extension were observed in order to take surface replicas and to examine the

specimens surface using the SEM and an optical microscope.

Analysis - Fiber Bridging Model

The fiber bridging phenomena that often occurs during fatigue loading of TMC was

modeled using a fiber bridging (FB) model similar to those outlined in [7-9]. As illustrated in

Figure 1, it is assumed in this model that fiber-matrix debonding takes place as a matrix crack

progresses past the fibers. The intact fibers in the wake of the matrix crack are idealized as a crack

bridging pressure, Ap. An unknown constant frictional shear stress, x, is assumed to act along the

debond length of the bridging fibers. A continuum fracture mechanics analysis and a

micromechanical analysis are combined to obtain stress intensity factor solutions for fiber bridging

matrix cracks of arbitrary size. In this study, the boundary correction factors and weight functions

developed in [10,11] were implemented into a FB model in order to account for cracks developing

in a center hole specimen configuration. The derivation of the governing equation is outlined in the

subsequent sections.

4



Analysis Procedure

Conventional fracture mechanics characterization of Mode I fatigue crack growth behavior

is accomplished through the relation between the crack growth rate and the stress intensity factor

range. In this study the crack growth behavior is modeled according to the power law function

introduced by Paris et al. [12]:

C(AKm)OdN - (1)

where C and n are material constants for the matrix material. The term AKm is the Mode I stress

intensity factor range in the matrix and is determined using a FB model which combines a

continuum fracture mechanics and a discrete micromechanics analyses. In the continuum fracture

mechanics analysis, the stress intensity factor in the composite, AKtip, and the crack opening

displacement in the composite, AStip, are given in terms of the unknown bridging pressure, Ap.

In the micromechanics analysis, the crack opening displacement in the matrix, Ai5m, is related to

Ap through the composite microstructural parameters which includes the frictional shear stress in

the debonding region, x.

Several continuum-discrete relations are used to relate A_itip with A_im, and AKti p with

AKm (see, for example, [6]) which ultimately yields a single equation in terms of the unknown

Ap. The continuum-discrete relations in [9] (AStip= A5 m, and AKti p = AKIn), produced the most

accurate correlations with experimental data with the least variation in frictional shear stress for

unidirectional TMC containing center notches [6] and were thus used in this study.

Assuming a value of x, the bridging pressure, Ap, can be solved. Knowing Ap, the stress

intensity factor range in the matrix, AK m, can be evaluated and then used in Equation (1) to model

the crack growth behavior of fiber bridging matrix cracks. A brief description of the continuum

fracture mechanics analysis, the discrete micromechanics analysis and the governing equation is

provided in the following sections.
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Continuum Fracture Mechanics Analysis

The continuum fracture mechanics analysis in the FB models provides solutions to the

composite stress intensity factor (AKtip) and the composite crack opening displacement (A_ti p) in

terms of the unknown bridging pressure (Ap). Assuming AKti p = AKm:

a

AK m = AKap p -2 J Gbridge(X,a,r,W)Ap(x)dx (2)

ml

ao

where ao is the initial unbridged crack length (hole radius, r) and Gbridg e is the weight function for

the bridging stress intensity factor range defined as:

dKp (3)
Gbridg e -dP

In Equation (3), Kp is the stress intensity factor due to a pair of concentrated forces, P, applied on

The term AKap p inthe crack surface at a distance x from the origin, as shown in Figure 2.

Equation (2) is the applied stress intensity factor range given by:

AKap p = AS "_f-_'_aFapp (4)

where AS is the applied far-field stress, Fap p is the applied stress boundary correction factor. A

compendium of boundary correction factors and weight functions, Fapp and Gtridg e, is provided in

[13] for a variety of cracked specimen configurations. For the case of symmetric cracks emanating

from a center hole, expressions for Fapp and Gbridg e were derived in [10,11] and are provided in

the Appendix for the sake of completeness. It should be pointed out that the boundary correction

factors and the weight functions in [10,11,13] were derived for isotropic materials and it was

assumed that these terms can be applied to the orthotropic materials studied in this research.

The opening displacements of the crack surfaces, A_itip, is determined using Castigliano's

Theorem as outlined in [13]. Assuming A_ti p = A_n:
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a

ASm- E'

x

where E' for an orthotropic material is [14]:

1 t /E-r- 2EL 2 -VLT + ELGLT

(5)

(6)

The terms in this equation are the laminate elastic properties as defined in the nomenclature.

Discrete Micromechanics Analysis

In the micromechanics analysis, the matrix crack opening displacement, ASm, is related to

the unknown bridging pressure, Ap, through the composite microstructural parameters as outlined

in detail in [6]. The force equilibrium of a single fiber in the wake of the matrix crack results in:

where:

ASm = _. Ap 2 (7)

_L rfEmvm= (8)
4w28f Efvf + Emvm)

The terms in this equation are the composite microstructural parameters as defined in the

nomenclature. The frictional shear stress, x, in Equation (8) is an ambiguous quantity that is

difficult to directly measure. In this study, x was used as a fitting parameter to crack growth data.

Governing Equation

Substituting Equation (7) into (5), the governing equation is obtained in the form of a

nonlinear double integral equation in terms of unknown bridging pressure, Ap:

a

2 f {AKm(x,fi.,r,W) dKd__ppx,fi.,r,W) } dg (9)Ap2 - _,E'
X

Using a Newton-Raphson iterative process and a Simpson type algorithm for numerical

integration, the governing equation is solved. Once the bridging pressure is known, the matrix
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stress intensity factor range, AK m, can obtained using Equation (2). Knowing AK m, standard

damage tolerance procedures can be used to model the crack growth behavior. In this study,

Equation (1) was numerically integrated using a Simpsons type algorithm to generate the matrix

crack length as a function of number of cycles.

Application of FB Model to Cross Ply Laminates

In order to apply the FB model to cross-ply laminates, it was assumed that matrix cracking

was controlled primarily by the fibers in the 0 ° plies and was not affected by the fibers in the 90 °

plies. Thus, in the micromechanics analysis, the 90 ° plies were modeled as matrix material by

using one half of the laminates fiber volume fraction, vf, in Equation (8). It was also assumed that

the cracking in the 90 ° plies was a local effect and did not influence the far-field properties. Thus,

in the continuum fracture mechanics analysis, the actual fiber volume fraction was used in

calculating the laminate properties for the orthotropic correction factor, E', in Equation (6).

Results and Discussion

In this section, experimental results of the matrix crack growth in center hole cross-ply

TMC, namely, SCS-6/Timetal-21S laminates and SCS-6/Ti-15-3 laminates are discussed first.

The experimental data generated in the current study for the SCS-6/Timetal-21S laminates is

presented along with the data reported in [5] for the SCS-6/Ti-15-3 laminates. Then results from

the analytical modeling of the observed crack growth behavior are outlined in which the frictional

shear stress in the FB model was used as a curve fitting parameter to matrix crack growth data.

Finally, experimental results were interpreted from the analysis using the FB model.

Experimental Results

Damage initiation and progression was monitored and recorded during fatigue loading in

cross-ply TMC containing center holes. Fatigue damage in SCS-6/Timetal-21S laminates

consisted primarily of Mode I matrix cracks as shown for example in Figure 3. As illustrated in



this figure for one side of the center hole in the specimen, two matrix cracks initiated and

progressed in a specimen subjected to Smax = 150 MPa. Similar cracking occurred on the other

side of the hole. After 200,000 cycles, the rate of growth of the matrix cracks corresponded to a

stress intensity factor range near the threshold value for the neat matrix material subjected to R =

0.1, AKtl a _- 5.5 MPa,_t-m (unpublished data reported by R. John and N. E. Ashbaugh, University

of Dayton Research Institute, 1992).

Fatigue damage was far more extensive in the SCS-6/Ti-15-3 specimens where multiple

Mode I matrix cracks developed from the center hole as shown for example in Figure 4 [5]. This

figure shows schematics taken directly from the CCTV monitor of matrix crack development on

one side of the hole of a specimen during fatigue loading at Sma x = 200 MPa. During this test,

matrix cracking initiated and progressed from the edge of the center hole as shown in Figure 4(a)

(cracks 1 and 2). As these matrix cracks continued to grow, secondary cracks formed in net

section regions away from the edge of the center hole, Figure 4(b) (cracks 4 and 7). In addition,

matrix cracks (cracks 3, 5 and 6) developed in regions above and below the original matrix cracks

(cracks 1 and 2). Matrix cracks continued to propagate and link-up until cracking reached a

saturated state, Figure 4(c). Saturation was assumed when no additional matrix cracks initiated

and when existing cracks no longer grew. For this specimen, saturation occurred after 150,000

cycles. As shown in the figure, the matrix cracks have a uniform spacing a short distance

(approximately 1 mm) away from the center hole. Similar cracking patterns (multiple matrix

cracks) were observed in [1,2] for [0D0]2s SCS-6/Ti-15-3 laminates containing center holes.

In spite of the observed matrix cracking on the surface as shown for example in Figures 3

and 4, the underlying 0 ° fibers were intact. In selected specimens, the outer layer of matrix

material was removed through an acid etching procedure to reveal the 0 ° fibers. Observations made

using the SEM revealed no fiber breaks in the SCS-6/Timetal-21S specimens tested in this study as

well as the SCS-6/Ti-15-3 laminates tested in [5].

The matrix crack length as a function of the number of cycles was obtained at several

applied stress levels and is shown in Figures 5 and 6 for the SCS-6/Timetal-21S laminates and the
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SCS-6fri-15-3 laminates, respectively. In these figures, the averagelength of the cracks

progressingfrom thecenterhole is shown. It shouldbepointedout thatin all casescracksgrew

on both sides of the hole at similar rates. For the SCS-6fri-15-3 laminates, the cycle number at

which the initiation of matrix cracks other than the ones progressing from the center hole are noted

(data points designated by f'tlled symbols), Figure 6. Only the matrix crack growth data designated

by open symbols in Figure 6 was subsequently evaluated. Under a constant applied stress range,

the matrix crack extension decreased as the number of cycles increased in both material systems

due primarily to the bridging fibers, Figures 5 and 6. Also shown in these figures, the extent of

matrix cracking increased as the applied stress level increased.

The rate of matrix cracking as a function of crack length for several applied stress levels is

shown in Figures 7 and 8 for the SCS-6/Timetal-21S laminates and SCS-6/Ti-15-3 laminates,

respectively. In both cases, the rate of matrix cracking decreased as the crack length increased and

increased as the applied stress increased. In general, by comparing the results from Figures 7 and

8, the rate and extent of matrix cracking in the SCS-6/Ti-15-3 laminates was greater than that in the

SCS-6/Timetal-21S laminates.

Characterization of the in-situ matrix fatigue crack growth behavior using the neat matrix

material properties was attempted using the applied stress intensity factor range, Equation (4).

Using standard data reduction procedures (ASTM Standard E 647), the crack growth rate as a

function of the applied stress intensity factor range (AKap p) for the neat matrix materials (at R =

0.1) and for the TMC is shown in Figures 9 and 10 for the SCS-6/Timetal-21S laminates and the

SCS-6/Ti-15-3 laminates, respectively. As shown in these figures, AKap p in the composite

significantly over estimates the actual stress intensity driving the matrix cracks. In addition, the

crack growth rate tends to decrease as the applied stress intensity increases due to the bridging

fibers in both materials. Thus, the applied stress intensity factor range is inappropriate to model

the growth of fiber bridging matrix cracks.

The applied nominal stress as a function of the number of cycles (S-N curve) is shown in

Figure 11 for the SCS-GTimetal-21S laminates and SCS-6/Ti-15-3 laminates. In this figure, the
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solid symbols are data from specimens that fractured, while the open symbols are data from

specimens that did not fail. In general, the results from this figure reveals that the fatigue lives of

the SCS-6/Timetal-2 IS laminates are shorter compared to SCS-6/Ti-15-3 laminates subjected to

similar applied stresses.

Analytical Results

Using the previously mentioned FB model, the stress intensity factor range in the matrix,

AK m, was calculated by curve fitting the frictional shear stress, x, to the matrix crack growth data

for both the Timetal-21S and Ti-15-3 titanium alloys. By adjusting the constant frictional shear

stress, the in-situ matrix crack growth data were collapsed onto that of the neat matrix material for

both material systems, Figures 12 and 13. Compared to Figures 9 and 10, the data is shifted to a

lower stress intensity factor range and is rotated towards a positive slope due to the fiber bridging

as modeled by the bridging pressure term in Equation (2). Using the FB model, an appropriate

expression for AK m was obtained for fiber bridging matrix cracks.

By integrating Equation (1) using the calculated AKm from Figures 12 and 13, the crack

length as a function of the number of cycles was determined and is shown in Figures 14 and 15 for

the SCS-6/Timetal-21S laminates and the SCS-6/Ti-15-3 laminates, respectively. As shown in

these figures, a good agreement was obtained between the observations (open symbols) and

calculations (Idled symbols) indicating the good fit for x and the appropriateness of Equation (1) in

describing the fatigue crack growth behavior.

Using the frictional shear stress values fitted to the matrix crack growth data, the calculated

stress in the first intact fiber as a function of the number of cycles for several applied stress levels

is shown in Figures 16 and 17 for the SCS-6frimetal-21S laminates and the SCS-6fri-15-3

laminates, respectively. As shown in these figures, the fiber stress increased as both the number

of cycles and the applied stress level increased. The fiber stresses in the SCS-6/Timetal-21S

laminates were higher than those calculated for the SCS-6/Ti-15-3 laminates. Apparently in the

SCS-6/Timetal-21S laminates, the stresses in the fibers reached a critical value sufficiently high to
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fracture the fibers at a lower number of fatigue cycles resulting in the lower fatigue life compared to

the SCS-6/Ti-15-3 laminates.

The values of the frictional shear stress used to fit the crack growth data for the SCS-

6/Timetal-21S laminates were higher than those for the SCS-6/Ti-15-3, Figures 12 and 13. This

result would suggest the following three hypotheses: (1) the radial thermal residual stresses acting

across the debonded surfaces causing the matrix to "choke" the fibers were higher in the SCS-

6/Timetal-21 S; (2) the coefficient of friction due to the roughness of the debonded surfaces was

higher in the SCS-6/Timetal-21S laminates; and (3) the length of the debond was less in the SCS-

6/Timetal-21S. All three hypotheses would cause an increase in the frictional shear stress acting

along the debonded fiber-matrix interface. The effect of the frictional shear stress on the stress

intensity factor range in the matrix and the stress in the first intact fiber is shown in Figure 18 for a

center notched unidirectional SCS-6/Ti-15-3 specimen tested in [6]. As shown in this figure, as x

increases, the fiber stress increases while AKm decreases. This trend (not shown here) was also

observed for the materials investigated in this research. Thus, the fibers would more likely fracture

in the SCS-6/Timetal-21S laminates whereas, matrix cracks would more likely propagate in the

SCS-6/Ti-15-3 laminates which is in agreement with experimental observations.

Concluding Remarks

The primary emphasis of this research was to model the fatigue crack growth behavior of

fiber bridging matrix cracks in cross-ply SCS-6/Ti-15-3 and SCS-6/Timetal-21S laminates

containing center holes. Experimental results revealed that matrix cracking was more extensive and

wide spread in the SCS-6/Ti-15-3 laminates compared with the SCS-6/Timetal-21S laminates. In

addition, the fatigue life of the SCS-6/Ti-15-3 laminates was significantly longer than that of the

SCS-6/Timetal-21S laminates. The standard practice of characterizing fatigue crack growth using

the applied stress intensity factor range was not suitable. Thus, a fiber bridging (FB) model which

was formulated using the boundary correction factor and weight function for symmetric cracks

emanating from a hole was used to model the observed matrix cracking. The FB model combines

continuum fracture mechanics and micromechanics analyses to derive stress intensity factor
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solutionsof matrixcracksbridgedby fibersin a unidirectionalcomposite.In orderto applytheFB

model to cross-ply laminates, it was assumedthat matrix cracking was a local phenomena

controlledprimarily by thefibers in the0° pliesandwasnotaffectedby thefibersin the90° plies.

Thus,in themicromechanicsanalysis,the90° pliesweremodeledasmatrixmaterialby usingone

half of the laminatesfiber volumefraction;while in thecontinuumfracturemechanicsanalysis,the

actualfiber volumefractionwasused.

Thefrictional shearstressassumedin theFBmodelwasusedasacurve fitting parameter

to matrixcrackgrowthdata.Thefrictional shearstressvaluesrequiredto fit thecrackgrowthdata

for the SCS-6/Timetal-21Slaminateswerehigher thanthosefor the SCS-6/Ti-15-3laminates.

Consequently,lower stressintensityfactorsin the matrix andhigherstressesin thefibers were

predictedin theSCS-6/Timetal-21Slaminatescomparedwith the SCS-6/Ti-15-3laminatesat the

sameappliedstresslevels. Thus,fiberswere moreproneto fracturein the SCS-6/Timetal-21S

laminateswhereas,moreextensivematrixcrackingwaslikely in theSCS-6/Ti-15-3laminates.
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Appendix - Boundary Correction Factor and Weight Function

For two symmetric cracks progressing from a center hole of radius r in an isotropic

material, the applied stress boundary correction factor is [10]:

where:

and:

Fapp = F1F2 (A1)

FI= {l+0.358r+l.425(r)2-1.578(r;+2.156(r)4}41 - a (A2)

_/ Mr _aF2 = sec W secw (A3)

The weight function, Gbridge, for two symmetric concentrated forces, P, applied to the cracks

surface in a center hole specimen configuration, Figure 2 [10]:

d_ dK_'
Gbridge - dP - dP Fh (A4)

dK_

In this equation, dP is the normalized stress intensity factor for a center notched specimen

configuration subjected to a pair of forces, P, on the crack surface and Fh is the correction factor to

account for a center hole boundary. The normalized stress intensity for a center notched specimen

is given by [13]:

where:

_ 1,0.297 cosw, (AS)

_X

Fin = tan W (A6)

cos w 
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Thecorrectionfactor to account for the center hole is given by [10]:

A _a- x_ . [a- xl2

where:

_=o._1_)_+O._OIr/'

(AT)

(A8)

(Ag)
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